Quantum Communications

-Research Interests-

In 1984, Bennett and Brassard suggested that the laws governing microscopic systems, i.e. quantum mechanics, could be related to the problem of communicating encrypted messages. This realization led to the rapid growth of the field of quantum communication and quantum cryptography. Quantum communication generally involves three separate stages: (1) encoding information on single particles of light, namely photons, (2) distributing the photons through an untrusted communication channel, e.g. fibre or free-space, and (3) detecting the photons to retrieve the encoded information. Since 1984, several proof-of-principle laboratory experiments have demonstrated the feasibility of quantum communications while exploring a wide range of photon sources, quantum cryptographic protocols and single photon detectors. Following these initial demonstrations, various communication channels have been studied in more realistic conditions, i.e. fibre networks and free-space channels, including shorter line-of-sight intra-city and ground-to-satellite links. In our group, we are interested in all aspects of quantum communications. From photon sources to novel quantum communication protocols, we explore fundamental concepts of quantum communication and investigate how they can influence implementations in real-life scenarios.


  • F. Bouchard, D. England, P. J. Bustard, K. Heshami, B. Sussman “Quantum communication with ultrafast time-bin qubits,” PRX Quantum 3, 010332 (2022).
  • D. England, F. Bouchard, K. Fenwick, K. Bonsma-Fisher, Y. Zhang, P. J. Bustard, B. J. Sussman “Perspectives on all-optical Kerr switching for quantum optical applications,” Applied Physics Letters 119, 160501 (2021).
  • F. Bouchard, D. England, P. J. Bustard, K. L. Fenwick, E. Karimi, K. Heshami, B. Sussman “Achieving ultimate noise tolerance in quantum communication,” Physical Review Applied 15, 024027 (2021).
  • F. Hufnagel, A. Sit, F. Bouchard, Y. Zhang, D. England, K. Heshami, B. J. Sussman, E. Karimi “Investigation of underwater quantum channels in a 30 meter flume tank using structured photons,” New Journal of Physics 22, 093074 (2020).
  • R. Fickler, F. Bouchard, E. Giese, V. Grillo, G. Leuchs, E. Karimi “Full-field mode sorter using two optimized phase transformations for high-dimensional quantum cryptography,” Journal of Optics 22, 024001 (2020).
  • F. Hufnagel, A. Sit, F. Grenapin, F. Bouchard, K. Heshami, D. England, Y. Zhang, B. J. Sussman, R. W. Boyd, G. Leuchs, E. Karimi “Characterization of an underwater channel for quantum communications in the Ottawa River,” Optics Express 27, 26346 (2019).
  • C. Kupchak, J. Erskine, D. England, B. Sussman “Terahertz-bandwidth switching of heralded single photons,” Optics Letters 44, 1427 (2019).
  • B. Sussman, P. Corkum, A. Blais, D. Cory, A. Damascelli “Quantum Canada,” Quantum Science and Technology 4, 020503 (2019).
  • F. Bouchard, K. Heshami, D. England, R. Fickler, R. W. Boyd, B.-G. Englert, L. L. S├ínchez-Soto, E. Karimi “Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons,” Quantum 2, 111 (2018).
  • C. Kupchak, P. J. Bustard, K. Heshami, J. Erskine, M. Spanner, D. G. England, B. J. Sussman “Time-bin-to-polarization conversion of ultrafast photonic qubits,” Physical Review A 96, 053812 (2017).